首页> 外文OA文献 >Prediction of onset of corrosion in concrete bridge decks using neural networks and case-based reasoning
【2h】

Prediction of onset of corrosion in concrete bridge decks using neural networks and case-based reasoning

机译:基于神经网络和案例推理的混凝土桥面板腐蚀开始预测

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper proposes a methodology for predicting the time to onset of corrosion of reinforcing steel in concrete bridge decks while incorporating parameter uncertainty. It is based on the integration of artificial neural network (ANN), case-based reasoning (CBR), mechanistic model, and Monte Carlo simulation (MCS). A probabilistic mechanistic model is used to generate the distribution of the time to corrosion initiation based on statistical models of the governing parameters obtained from field data. The proposed ANN and CBR models act as universal functional mapping tools to approximate the relationship between the input and output of the mechanistic model. These tools are integrated with the MCS technique to generate the distribution of the corrosion initiation time using the distributions of the governing parameters. The proposed methodology is applied to predict the time to corrosion initiation of the top reinforcing steel in the concrete deck of the Dickson Bridge in Montreal. This study demonstrates the feasibility, adequate reliability and computational efficiency of the proposed integrated ANN-MCS and CBR-MCS approaches for preliminary project?level and also network-level analyses.
机译:本文提出了一种在结合参数不确定性的情况下预测钢筋混凝土桥面板中钢筋腐蚀发生时间的方法。它基于人工神经网络(ANN),基于案例的推理(CBR),机械模型和蒙特卡洛模拟(MCS)的集成。基于从现场数据获得的控制参数的统计模型,概率机制模型用于生成腐蚀开始时间的分布。所提出的ANN和CBR模型充当通用功能映射工具,以近似机制模型的输入和输出之间的关系。这些工具与MCS技术集成在一起,可以使用控制参数的分布生成腐蚀开始时间的分布。所提出的方法可用于预测蒙特利尔Dickson桥混凝土甲板中顶部钢筋腐蚀开始的时间。这项研究证明了拟议的ANN-MCS和CBR-MCS集成方法在项目初期和网络层面的分析的可行性,足够的可靠性和计算效率。

著录项

  • 作者

    Morcous, G.; Lounis, Z.;

  • 作者单位
  • 年度 2005
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号